A
o ‘b?ié‘sv i

B Fanih
b ¥ R e
i i R
g At o
T !

e

8
G

C++: The Complete Reference

discussed in earlier chapters, compile-time polymorphism is achieved by
overloading functions and operators. Run-time polymorphism is accomplished
by using inheritance and virtual functions, and these are the topics of this chapter.

Polymorphism is supported by C++ both at compile time and at run time. As

Virt‘u‘al Functions

A virtual function is a member function that is declared within a base class and redefined
by a derived class. To create a virtual function, precede the function’s declaration in the
base class with the keyword virtual. When a class containing a virtual function is inherited,
the derived class redefines the virtual function to fit its own needs. In essence, virtual
functions implement the "one interface, multiple methods" philosophy that underlies
polymorphism. The virtual function within the base class defines the form of the interface
to that function. Each redefinition of the virtual function by a derived class implements
its operation as it relates specifically to the derived class. That is, the redefinition
creates a specific method.

When accessed "normally,” virtual functions behave just like any other type of class
member function. However, what makes virtual functions important and capable of
supporting run-time polymorphism is how they behave when accessed via a pointer.
As discussed in Chapter 13, a base-class pointer can be used to point to an object of
any class derived from that base. When a base pointer points to a derived object that
contains a virtual function, C++ determines which version of that function to call based
upon the type of object pointed to by the pointer. And this determination is made at run
time. Thus, when different objects are pointed to, different versions of the virtual function
are executed. The same effect applies to base-class references.

To begin, examine this short example:

#include <iostream>
using namespace std;

class base {
public:
virtual void vfunc() {
cout << "This is base's vfunc().\n";

Y

class derivedl : public base {
public:
void vfunc() {
cout << "This is derivedl's vfunc().\n";

Chapter 17: Virtual Functions and Polymorphism

I

class derived2 : public base {
public:
void vfunc () {

cout << "This is derived2's vfunc() .\n";
Y

int main()

{
base *p, b;
derivedl dil;
derived2 d2;

// point to base
p = &b;
p->vfunc(); // access base's vfunc()

// point to derivedl
p = &d1l;
p->vfunci{); // access derivedl's viunc ()

// point to derived2
p = &42;

p->vfunc{); // access derived2's vfunc()

return 0;

This program displays the following:

This is base's vfunc().
This is derivedl's vfunc().
This is derived2's vfunc().

As the program illustrates, inside base, the virtual function vfunc() is declared.
Notice that the keyword virtual precedes the rest of the function declaration. When
vfunc() is redefined by derived1 and derived2, the keyword virtual is not needed.
(However, it is not an error to include it when redefining a virtual function inside a
derived class; it's just not needed.)

446 C++: The Complete Reference

In this program, base is inherited by both derivedl and derived2. Inside each
class definition, vfunc() is redefined relative to that class. Inside main(), four
variables are declared:

Name Type

p base class pointer
b object of base

dl object of derivedl
d2 object of derived2

Next, p is assigned the address of b, and vfunc() is called via p. Since p is pointing
to an object of type base, that version of vfunc() is executed. Next, p is set to the
address of d1, and again vfunc() is called by using p. This time p points to an object
of type derivedl. This causes derivedl:vfunc() to be executed. Finally, p is assigned
the address of d2, and p—>vfunc() causes the version of vfunc() redefined inside
derived2 to be executed. The key point here is that the kind of object to which p points
determines which version of vfunc() is executed. Further, this determination is made
at run time, and this process forms the basis for run-time polymorphism.

Although you can call a virtual function in the "normal” manner by using an object’s
name and the dot operator, it is only when access is through a base-class pointer (or
reference) that run-time polymorphism is achieved. For example, assuming the preceding
example, this is syntactically valid:

d2.vfunc(}); // calls derived2's vfunc()

Although calling a virtual function in this manner is not wrong, it simply does not take
advantage of the virtual nature of vfunc().

At first glance, the redefinition of a virtual function by a derived class appears similar
to function overloading. However, this is not the case, and the term overloading is not
applied to virtual function redefinition because several differences exist. Perhaps the
most important is that the prototype for a redefined virtual function must match exactly
the prototype specified in the base class. This differs from overloading a normal function,
in which return types and the number and type of parameters may differ. (In fact, when
you overload a function, either the number or the type of the parameters must differ! It
is through these differences that C++ can select the correct version of an overloaded
function.) However, when a virtual function is redefined, all aspects of its prototype must
be the same. If you change the prototype when you attempt to redefine a virtual function,
the function will simply be considered overloaded by the C++ compiler, and its virtual
nature will be lost. Another important restriction is that virtual functions must be

Chapter 17: Virtual Functions and Polymorphism 447

nonstatic members of the classes of which they are part. They cannot be friends. Finally,
constructor functions cannot be virtual, but destructor functions can.

Because of the restrictions and differences between function overloading and
virtual function redefinition, the term overriding is used to describe virtual function
redefinition by a derived class.

Calling a Virtual Function
Through a Base Class Reference

In the preceding example, a virtual function was called through a base-class pointer,
but the polymorphic nature of a virtual function is also available when called through
a base-class reference. As explained in Chapter 13, a reference is an implicit pointer.
Thus, a base-class reference can be used to refer to an object of the base class or any
object derived from that base. When a virtual function is called through a base-class
reference, the version of the function executed is determined by the object being
referred to at the time of the call.

The most common situation in which a virtual function is invoked through a base
class reference is when the reference is a function parameter. For example, consider the
following variation on the preceding program.

/* Here, a base class reference is used to access
a virtual function. */

#include <iostream>

using namespace std;

class base {

public:
virtual void vfunc () {
cout << "This is base's vfunc().\n";

}i

class derivedl : public base {

public:
void viunc () {
cout << "This 1s derivedl's vfunc().\n";
}
b
class derived2 : public base {

public:

448

C++: The Complete Reference

void vfunc () {
cout << "This is derived2's vfunc().\n";

Yi

// Use a base class reference parameter.
void f (base &r) {
r.viunc () ;

int main()

{
base b;
derivedl dil;
derived2 d2;

f(b); // pass a base object to f()
f(dl); // pass a derivedl object to f()
f(32); // pass a derived2 object to f()
return 0;

This program produces the same output as its preceding version. In this example, the
function f() defines a reference parameter of type base. Inside main(), the function
is called using objects of type base, derived1, and derived2. Inside f(), the specific
version of vfunc() that is called is determined by the type of object being referenced
when the function is called.

For the sake of simplicity, the rest of the examples in this chapter will call virtual
functions through base-class pointers, but the effects are same for base-class references.

The Virtual Attribute Is Inherited

When a virtual function is inherited, its virtual nature is also inherited. This means that
when a derived class that has inherited a virtual function is itself used as a base class
for another derived class, the virtual function can still be overridden. Put differently, no
matter how many times a virtual function is inherited, it remains virtual. For example,
consider this program:

#include <iostream>
using namespace std;

Chapter 17: Virtual Functions and Polymorphism 449

class base {

public:
virtual void vfunc() {
cout << "This is base's vfunc{().\n";
}
Y

class derivedl : public base {

public:
void vfunc() {
cout << "This is derivedl's vfunc().\n";
}
}i

/* derived2 inherits virtual function vfunc()
from derivedl. */

class derived2 : public derivedl {
public:
// viunc() is still virtual
void vfunc() {
cout << "This is derived2's vfunc().\n";
}

}i

int main ()

{
base *p, b;
derivedl di;
derived2 d2;

// point to base
p = &b;
p->vfunc(); // access base's vfunc/()

// point to derivedl
p = &dl;
p->vfunc(); // access derivedl's vfunc/()

// point to derived2
p = &d2;
p->vfunc(); // access derived2's vfunc{)

450 C++: The Complete Reference

return 0;

As expected, the preceding program displays this output:

This is base's vfunc().
This is derivedl's vfunc().
This is derived2's wvfunc().

In this case, derived?2 inherits derived1 rather than base, but vfunc() is still virtual.

___| virtual Functions Are Hierarchical

As explained, when a function is declared as virtual by a base class, it may be
overridden by a derived class. However, the function does not have to be overridden.
When a derived class fails to override a virtual function, then when an object of that
derived class accesses that function, the function defined by the base class is used. For
example, consider this program in which derived2 does not override vfunc():

#include <iostream>
using namespace std;

class base {

public:
virtual void vfunc() {
cout << "This is base's vfunc().\n";

Y

class derivedl : public base {

public:
void vfunc() {
cout << "This is derivedl's vfunc().\n";

Y

class derived2 : public base {

Chapter 17: Virtual Functions and Polymorphism 451

public:
/7 viunc() not overridden by derived2, base's is used
}i

int main{()

{
base *p, b;
derivedl di;
derived2 d2;

// point to base
p = &b;

p->vfunc(); // access base's vfunc/{)

// point to derivedl
p = &d1;
p->vfunc(); // access derivedl's vfunc()

// point to derived2
p = &d2;
p->vfunc(); // use base's vfunc()

return 0;

The program produces this output:

This i1s base's vfunc().
This is derivedl's vfunc{().
This is base's vfunc().

Because derived2 does not override vfunc(), the function defined by base is used
when vfunc() is referenced relative to objects of type derived2.

The preceding program illustrates a special case of a more general rule. Because
inheritance is hierarchical in C++, it makes sense that virtual functions are also
hierarchical. This means that when a derived class fails to override a virtual function,
the first redefinition found in reverse order of derivation is used. For example, in the
following program, derived2 is derived from derived1, which is derived from base.
However, derived2 does not override vfunc(). This means that, relative to derived2,

482 C++: The Complete Reference

the closest version of vfunc() is in derivedl. Therefore, it is derived1:vfunc() that is
used when an object of derived2 attempts to call vfunc().

#include <iostream>
using namespace std;

class base ({
public:
virtual void vfiunc() {
cout << "This is base's vfunc().\n";

}i
class derivedl : public base {
public:
void vfunc () {
cout << "This is derivedl's vfunc().\n";
}
}s

class derived? : public derivedl {

public:

/* vfunc() not overridden by derivedZ.
In this case, since derived2 is derived from
derivedl, derivedl's vfunc() is used.

*/

Y

int main()

base *p., b;
derivedl dl;
derived2 d2;

// point to base
p = &b;
p->vfunc(); // access base's vfunc ()

// point to derivedl
p = &d41;
p->vfunc(); // access derivedl's viunc ()

Chapter 17: Virtual Functions and Polymorphism 453

// point to derived2
p = &d2;
p->vfunc(); // use derivedl's vfunc()

return 0;:

The program displays the following:

This is base's vfunc{().
This is derivedl's vfunc{().
This is derivedl's vfunc().

___| Pure Virtual Functions

As the examples in the preceding section illustrate, when a virtual function is not
redefined by a derived class, the version defined in the base class will be used.
However, in many situations there can be no meaningful definition of a virtual
function within a base class. For example, a base class may not be able to define
an object sufficiently to allow a base-class virtual function to be created. Further,
in some situations you will want to ensure that all derived classes override a virtual
function. To handle these two cases, C++ supports the pure virtual function.

A pure virtual function is a virtual function that has no definition within the base
class. To declare a pure virtual function, use this general form:

virtual type func-name(parameter-list) = 0;

When a virtual function is made pure, any derived class must provide its own
definition. If the derived class fails to override the pure virtual function, a compile-time
error will result.

The following program contains a simple example of a pure virtual function. The
base class, number, contains an integer called val, the function setval(), and the pure
virtual function show(). The derived classes hextype, dectype, and octtype inherit
number and redefine show() so that it outputs the value of val in each respective number
base (that is, hexadecimal, decimal, or octal).

#include <iostream>

using namespace std;

class number ({

454 C++: The Complete Reference

protected:
int val;
public:
void setval(int i) { val = i; }
// show() 1s a pure virtual function
virtual void show() = 0;
Y

class hextype : public number {
public:
void show() {
cout << hex << val << "\n";

Y

class dectype : public number {
public:
void show() {
cout << val << "\n";

Yi

class octtype : public number ({
public:
void show() {
cout << oct << wval << "\n";

Yi

int main()

{
dectype d;
hextype h;
octtype o;

d.setval(20);
d.show(); // displays 20 - decimal

h.setval (20);
h.show(); // displays 14 - hexadecimal

Chapter 17: Virtual Functions and Polymorphism 455

o.setval (20);
o.show(); // displays 24 - octal

return 0;

Although this example is quite simple, it illustrates how a base class may not be
able to meaningfully define a virtual function. In this case, number simply provides
the common interface for the derived types to use. There is no reason to define show() b
inside number since the base of the number is undefined. Of course, you can always :
create a placeholder definition of a virtual function. However, making show() pure
also ensures that all derived classes will indeed redefine it to meet their own needs.

Keep in mind that when a virtual function is declared as pure, all derived classes
must override it. If a derived class fails to do this, a compile-time error will result.

Abstract Classes

A class that contains at least one pure virtual function is said to be abstract. Because an
abstract class contains one or more functions for which there is no definition (that is,
a pure virtual function), no objects of an abstract class may be created. Instead, an abstract
class constitutes an incomplete type that is used as a foundation for derived classes.
Although you cannot create objects of an abstract class, you can create pointers
and references to an abstract class. This allows abstract classes to support run-time
polymorphism, which relies upon base-class pointers and references to select the
proper virtual function.

Using Virtual Functions

One of the central aspects of object-oriented programming is the principle of "one
interface, multiple methods.” This means that a general class of actions can be defined,
the interface to which is constant, with each derivation defining its own specific operations.
In concrete C++ terms, a base class can be used to define the nature of the interface to a
general class. Each derived class then implements the specific operations as they relate
to the type of data used by the derived type.

One of the most powerful and flexible ways to implement the "one interface,
multiple methods" approach is to use virtual functions, abstract classes, and run-time
polymorphism. Using these features, you create a class hierarchy that moves from
general to specific (base to derived). Following this philosophy, you define all
common features and interfaces in a base class. In cases where certain actions can be
implemented only by the derived class, use a virtual function. In essence, in the base

C++: The Complete Reference

class you create and define everything you can that relates to the general case. The
derived class fills in the specific details.

Following is a simple example that illustrates the value of the "one interface,
multiple methods” philosophy. A class hierarchy is created that performs conversions
from one system of units to another. (For example, liters to gallons.) The base class
convert declares two variables, vall and val2, which hold the initial and converted
values, respectively. It also defines the functions getinit() and getconv(), which return
the initial value and the converted value. These elements of convert are fixed and
applicable to all derived classes that will inherit convert. However, the function that
will actually perform the conversion, compute(), is a pure virtual function that must
be defined by the classes derived from convert. The specific nature of compute()
will be determined by what type of conversion is taking place.

// Virtual function practical example.
#include <iostream>
using namespace std;

class convert {

protected:
double vall; // initial value
double val2; // converted value
public:

convert (double 1) [
vall = i;
}
double getconv() { return val2; }
double getinit() { return vall; }

virtual void compute() = 0;

i

// Liters to gallons.
class 1_to_g : public convert {
public:
1_to_g(double i) : convert (i) { }
void compute() {
val2 = vall / 3.7854;

Y

// Fahrenheit to Celsius
class f_to_c : public convert {

Chapter 17: Virtual Functions and Polymorphism

% public:

f to_c(double 1} : convert(i) { }
vold compute () {
val2 = {(vall-32) / 1.8;

I

int main()

{

convert *p; // pointer to base class

1 _to_g lgob(4);
f_to_c fcob(70);

// use virtual function mechanism to convert
p = &lgob;

cout << p->»getinit() << " liters is ";
p->compute () ;

cout << p->getconv() << " gallons\n"; // l_to_g
p = &fcob;
cout << p->getinit() << " in Fahrenheit is ";

p->compute () ;
cout << p->getconv{) << " Celsius\n"; // f_to_c

return O;

The preceding program creates two derived classes from convert, called 1_to_g
and f_to_c. These classes perform the conversions of liters to gallons and Fahrenheit
to Celsius, respectively. Each derived class overrides compute() in its own way to
perform the desired conversion. However, even though the actual conversion (that
is, method) differs between 1_to_g and f_to_c, the interface remains constant.

One of the benefits of derived classes and virtual functions is that handling a new
case is a very easy matter. For example, assuming the preceding program, you can add
a conversion from feet to meters by including this class:

// Feet to meters
class f_to_m : public convert {
public:

f_to_m(double i) : convert(i) { }

457

458

C++4+: The Complete Reference

void compute() {
val2 = vall / 3.28;

Y

An important use of abstract classes and virtual functions is in class libraries. You
can create a generic, extensible class library that will be used by other programmers.
Another programmer will inherit your general class, which defines the interface and
all elements common to all classes derived from it, and will add those functions
specific to the derived class. By creating class libraries, you are able to create and
control the interface of a general class while still letting other programmers adapt
it to their specific needs.

One final point: The base class convert is an example of an abstract class. The
virtual function compute() is not defined within convert because no meaningful
definition can be provided. The class convert simply does not contain sufficient
information for compute() to be defined. It is only when convert is inherited by a
derived class that a complete type is created.

Early vs. Late Binding

Before concluding this chapter on virtual functions and run-time polymorphism, there
are two terms that need to be defined because they are used frequently in discussions
of C++ and object-oriented programming: early binding and late binding.

Early binding refers to events that occur at compile time. In essence, early binding
occurs when all information needed to call a function is known at compile time. (Put
differently, early binding means that an object and a function call are bound during
compilation.) Examples of early binding include normal function calls (including
standard library functions), overloaded function calls, and overloaded operators. The
main advantage to early binding is efficiency. Because all information necessary to call
a function is determined at compile time, these types of function calls are very fast.

The opposite of early binding is late binding. As it relates to C++, late binding refers
to function calls that are not resolved until run time. Virtual functions are used to
achieve late binding. As you know, when access is via a base pointer or reference, the
virtual function actually called is determined by the type of object pointed to by the
pointer. Because in most cases this cannot be determined at compile time, the object
and the function are not linked until run time. The main advantage to late binding is
flexibility. Unlike early binding, late binding allows you to create programs that can
respond to events occurring while the program executes without having to create a
large amount of "contingency code.” Keep in mind that because a function call is not
resolved until run time, late binding can make for somewhat slower execution times.

